Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex.
نویسندگان
چکیده
Among tau phosphorylation sites, some phosphoepitopes referred to as abnormal ones are exclusively found on tau aggregated into filaments in Alzheimer's disease. Recent data suggested that molecular mechanisms similar to those encountered during mitosis may play a role in abnormal tau phosphorylation. In particular, TG-3 phosphoepitope is associated with early stages of neurofibrillary tangles (NFTs). In this study, we reported a suitable cell model consisting of SH-SY5Y cells stably transfected with an inducible p25 expression vector. It allows investigation of tau phosphorylation by p25-Cdk5 kinase complex in a neuronal context and avoiding p25-induced cytotoxicity. Immunoblotting analyses showed that p25-Cdk5 strongly phosphorylates tau protein not only at the AT8 epitope but also at the AT180 epitope and at the Alzheimer's mitotic epitope TG-3. Further biochemical analyses showed that abnormal phosphorylated tau accumulated in cytosol as a microtubule-free form, suggesting its impact on tau biological activity. Since tau abnormal phosphorylation occurred in dividing cells, TG-3 immunoreactivity was also investigated in differentiated neuronal ones, and both TG-3-immunoreactive tau and nucleolin, another early marker for NFT, were also generated. These data suggest that p25-Cdk5 is responsible for the mitotic-like phosphoepitopes present in NFT and argue for a critical role of Cdk5 in neurodegenerative mechanisms.
منابع مشابه
Physiological and pathological phosphorylation of tau by Cdk5
Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer's disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it i...
متن کاملTamoxifen inhibits CDK5 kinase activity by interacting with p35/p25 and modulates the pattern of tau phosphorylation.
Cyclin-dependent kinase 5 (CDK5) is a multifunctional enzyme that plays numerous roles, notably in brain development. CDK5 is activated through its association with the activators, p35 and p39, rather than by cyclins. Proteolytic procession of the N-terminal part of its activators has been linked to Alzheimer's disease and various other neuropathies. The interaction with the proteolytic product...
متن کاملCDK5: A new lead to survival
The protein kinase CDK5 was originally discovered at a time when cyclin-dependent kinases were thought to be involved exclusively in cell cycle control. The CDK5 catalytic subunit was first identified based on its nucleotide sequence homology to other known CDK family members (cdc2, CDK2), while the enzyme activity was identified by protein purification of a tau kinase relevant to Alzheimer dis...
متن کاملDiaminothiazoles modify Tau phosphorylation and improve the tauopathy in mouse models.
Although Tau accumulation is a feature of several neurodegenerative conditions, treatment options for these conditions are nonexistent. Targeting Tau kinases represents a potential therapeutic approach. Small molecules in the diaminothiazole class are potent Tau kinase inhibitors that target CDK5 and GSK3β. Lead compounds from the series have IC50 values toward CDK5/p25 and GSK3β in the low nan...
متن کاملSeptin Phosphorylation and Neuronal Degeneration; Role of Cyclin Dependent Kinase 5 (Cdk5)
Cellular function is tightly regulated by protein kinases that orchestrate cell signaling events [1]. During cell replication, kinases activated by cyclin family members (Cdks) play an important role in regulating transitions through the cell cycle in most organisms. Cdks are activated upon association with cyclin regulatory subunits coupled to a phosphorylation event at specific activation sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 36 شماره
صفحات -
تاریخ انتشار 2003